Sharp Brains: Brain Fitness and Cognitive Health News

Neuroplasticity, Brain Fitness and Cognitive Health News

Icon

Heart Rate Variability as an Index of Regulated Emotional Responding

Con­tin­u­ing with the theme of a Week of Sci­ence spon­sored by Just Sci­ence, we will high­light some of the key points in: Appel­hans BM, Lueck­en LJ. Heart Rate Vari­abil­i­ty as an Index of Reg­u­lat­ed Emo­tion­al Respond­ing. Review of Gen­er­al Psy­chol­o­gy. 2006;10:229–240.

Defin­ing Heart Rate Vari­abil­i­ty
Effec­tive emo­tion­al reg­u­la­tion depends on being able to flex­i­bly adjust your phys­i­o­log­i­cal response to a chang­ing envi­ron­ment.

… heart rate vari­abil­i­ty (HRV) is a mea­sure of the con­tin­u­ous inter­play between sym­pa­thet­ic and parasym­pa­thet­ic influ­ences on heart rate that yields infor­ma­tion about auto­nom­ic flex­i­bil­i­ty and there­by rep­re­sents the capac­i­ty for reg­u­lat­ed emo­tion­al respond­ing.”

HRV reflects the degree to which car­diac activ­i­ty can be mod­u­lat­ed to meet chang­ing sit­u­a­tion­al demands.”

The sym­pa­thet­ic (SNS) and parasym­pa­thet­ic (PNS) branch­es of the auto­nom­ic ner­vous sys­tem (ANS) antag­o­nis­ti­cal­ly influ­ence the lengths of time between con­sec­u­tive heart­beats. Faster heart rates, which can be due to increased SNS and/or low­er PNS activ­i­ty, cor­re­spond to a short­er inter­beat inter­val while slow­er heart rates have a longer inter­beat inter­val, which can be attrib­uted to increased PNS and/or decreased SNS activ­i­ty.

The fre­quen­cy-based HRV analy­ses are based on the fact that the vari­a­tions in heart rate pro­duced by SNS and PNS activ­i­ty occur at dif­fer­ent speeds, or fre­quen­cies. SNS is slow act­ing and medi­at­ed by nor­ep­i­neph­rine while PNS influ­ence is fast act­ing and medi­at­ed by acetyl­choline.


Phys­i­o­log­ic Under­pin­nings of HRV

Breath­ing air into the lungs tem­porar­i­ly gates off the influ­ence of the parasym­pa­thet­ic influ­ence on heart rate, pro­duc­ing a heart rate increase (see Berntson, Caciop­po, & Quigley, 1993). Breath­ing air out of the lungs rein­states parasym­pa­thet­ic influ­ence on heart rate, result­ing in a heart rate decrease. This rhyth­mic oscil­la­tion in heart rate pro­duced by res­pi­ra­tion is called res­pi­ra­to­ry sinus arrhyth­mia (Bernar­di, Por­ta, Gabut­ti, Spicuz­za, & Sleight, 2001; Berntson et al., 1993).

The cen­tral auto­nom­ic net­work (CAN) assists emo­tion­al reg­u­la­tion by adjust­ing phys­i­o­log­i­cal arousal to appro­pri­ate­ly match the exter­nal and inter­nal envi­ron­ments. The CAN con­sists of cor­ti­cal, lim­bic, and brain­stem com­po­nents. Its out­put is trans­mit­ted to the sinoa­tri­al node of the heart, among oth­er organs.

HRV reflects the moment-to-moment out­put of the CAN and, by proxy, an individual’s capac­i­ty to gen­er­ate reg­u­lat­ed phys­i­o­log­i­cal respons­es in the con­text of emo­tion­al expres­sion (Thay­er & Lane, 2000; Thay­er & Siegle, 2002).

Psy­chophys­i­o­log­i­cal The­o­ries of HRV
Two major the­o­ries causal­ly relate auto­nom­ic flex­i­bil­i­ty, rep­re­sent­ed by HRV, and the capac­i­ty for reg­u­lat­ed emo­tion­al respond­ing:

  1. Poly­va­gal The­o­ry: an evo­lu­tion­ary expla­na­tion that the ANS devel­oped in stages to deal with changes in the envi­ron­ment and respond effec­tive­ly. The last com­po­nent devel­oped, the ven­tral vagus com­plex, phys­i­cal­ly con­nects with the facial mus­cles, voice pro­duc­tion, and oth­er social­ly impor­tant behav­iors, which cre­ates a phys­i­cal con­nec­tion between the heart and emo­tion­al expres­sion.
  2. Neu­ro­vis­cer­al Inte­gra­tion The­o­ry: an inte­gra­tive expla­na­tion that evo­lu­tion­ary forces led to the devel­op­ment of a rapid­ly respond­ing vagus nerve to sup­port appro­pri­ate emo­tion­al expres­sion and reg­u­la­tion through con­nec­tions with the cor­tex, lim­bic sys­tem, and brain­stem. By inhibit­ing oth­er poten­tial respons­es through synap­tic activ­i­ty in the brain and vagal activ­i­ty in the body, the CAN acts as a “neu­ro­phys­i­o­log­i­cal com­mand cen­ter gov­ern­ing cog­ni­tive, behav­ioral, and phys­i­o­log­i­cal ele­ments into reg­u­lat­ed emo­tion states”.

Both the­o­ries pre­sent­ed above are sim­i­lar in that they (a) spec­i­fy a crit­i­cal role for parasym­pa­thet­i­cal­ly medi­at­ed inhi­bi­tion of auto­nom­ic arousal in emo­tion­al expres­sion and reg­u­la­tion and (b) main­tain that HRV mea­sures are infor­ma­tive about indi­vid­u­als’ capac­i­ty for this aspect of reg­u­lat­ed emo­tion­al respond­ing.

Empir­i­cal Research With HRV

  • Low HRV is an inde­pen­dent risk fac­tor for sev­er­al neg­a­tive car­dio­vas­cu­lar out­comes
  • Low HRV is a proxy for under­ly­ing car­dio­vas­cu­lar dis­ease process­es
  • High­er lev­els of rest­ing HRV have been asso­ci­at­ed with effec­tive cop­ing strate­gies
  • Atten­tion con­trol is asso­ci­at­ed with high­er HRV
  • Patients with gen­er­al­ized anx­i­ety dis­or­der show low­er HRV than con­trols
  • Low HRV has been asso­ci­at­ed with depres­sion

Sum­ma­ry, Future Direc­tions, and Con­clu­sions
“HRV is emerg­ing as an objec­tive mea­sure of indi­vid­ual dif­fer­ences in reg­u­lat­ed emo­tion­al respond­ing, par­tic­u­lar­ly as it relates to social process­es and men­tal health.”

Fur­ther inves­ti­ga­tion should attempt to elu­ci­date those con­texts in which the auto­nom­ic flex­i­bil­i­ty rep­re­sent­ed by greater HRV is par­tic­u­lar­ly adap­tive, as well as sit­u­a­tions in which greater HRV may be mal­adap­tive. Although the­o­rists and researchers have empha­sized the impor­tance of parasym­pa­thet­i­cal­ly medi­at­ed HRV in reg­u­lat­ed emo­tion­al respond­ing, the rel­a­tive con­tri­bu­tion of sym­pa­thet­ic reg­u­la­tion of the heart has not yet been clar­i­fied.”

Poten­tial clin­i­cal appli­ca­tions of HRV also exist, as increas­ing an individual’s capac­i­ty for inhibito­ry emo­tion reg­u­la­tion through HRV biofeed­back (Lehrer et al., 2003) may have ther­a­peu­tic impli­ca­tions for mood, anx­i­ety, and impulse con­trol dis­or­ders.”

Unlike oth­er psy­chophys­i­o­log­i­cal vari­ables, HRV pro­vides infor­ma­tion regard­ing both PNS and SNS activ­i­ty, there­by per­mit­ting infer­ences about both inhibito­ry and exci­ta­to­ry process­es in emo­tion reg­u­la­tion.”

Leave a Reply...

Loading Facebook Comments ...

10 Responses

  1. Kostya says:

    It would be inter­est­ing to know details

Leave a Reply

Categories: Cognitive Neuroscience, Health & Wellness

Tags: , , , , , , , , , , , , , , , , , , , , ,

All Slidedecks & Recordings Available — click image below

Search for anything brain-related in our article archives

About SharpBrains

As seen in The New York Times, The Wall Street Journal, BBC News, CNN, Reuters, and more, SharpBrains is an independent market research firm and think tank tracking health and performance applications of brain science.