Machine-learning study finds EEG brain signatures that predict response to antidepressant treatments
–
Brain-wave pattern can identify people likely to respond to antidepressant, study finds (Stanford Medicine press release):
“A new method of interpreting brain activity could potentially be used in clinics to help determine the best treatment options for depression, according to a study led by researchers at the Stanford School of Medicine.
Stanford researchers and their collaborators used electroencephalography, a tool for monitoring electrical activity in the brain, and an algorithm to identify a brain-wave signature in individuals with depression who will most likely respond to sertraline, an antidepressant marketed as Zoloft …
“This study takes previous research showing that we can predict who benefits from an antidepressant and actually brings it to the point of practical utility,” said Amit Etkin, MD, PhD, professor of psychiatry and behavioral sciences at Stanford. “I will be surprised if this isn’t used by clinicians within the next five years.”
Instead of functional magnetic resonance imaging, an expensive technology often used in studies to image brain activity, the scientists turned to electroencephalography, or EEG, a much less costly technology…
The paper is one of several based on data from a federally funded depression study launched in 2011 — the largest randomized, placebo-controlled clinical trial on antidepressants ever conducted with brain imaging — which tested the use of sertraline in 309 medication-free patients. The multicenter trial was called Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care, or EMBARC. Led by Trivedi, it was designed to advance the goal of improving the trial-and-error method of treating depression that is still in use today.
“It often takes many steps for a patient with depression to get better,” Trivedi said. “We went into this thinking, ‘Wouldn’t it be better to identify at the beginning of treatment which treatments would be best for which patients?’”
The Study:
An electroencephalographic signature predicts antidepressant response in major depression (Nature Biotechnology)
- Abstract: Antidepressants are widely prescribed, but their efficacy relative to placebo is modest, in part because the clinical diagnosis of major depression encompasses biologically heterogeneous conditions. Here, we sought to identify a neurobiological signature of response to antidepressant treatment as compared to placebo. We designed a latent-space machine-learning algorithm tailored for resting-state electroencephalography (EEG) and applied it to data from the largest imaging-coupled, placebo-controlled antidepressant study (n?=?309). Symptom improvement was robustly predicted in a manner both specific for the antidepressant sertraline (versus placebo) and generalizable across different study sites and EEG equipment. This sertraline-predictive EEG signature generalized to two depression samples, wherein it reflected general antidepressant medication responsivity and related differentially to a repetitive transcranial magnetic stimulation treatment outcome. Furthermore, we found that the sertraline resting-state EEG signature indexed prefrontal neural responsivity, as measured by concurrent transcranial magnetic stimulation and EEG. Our findings advance the neurobiological understanding of antidepressant treatment through an EEG-tailored computational model and provide a clinical avenue for personalized treatment of depression.
The Study in Context:
- Should Cognitive Behavioural Therapy (not antidepressant drugs) be the first-line treatment for depression?
- Neuroengineering meets neuroethics to address treatment-resistant depression
- CVS Health: Cognitive behavioral therapy (CBT) apps may help you more than sleeping pills
- A call to action: We need the right incentives to guide ethical innovation in neurotech and healthcare
- New report: Empowering 8 Billion Minds via Ethical Development and Adoption of Neurotechnologies
- 10 highlights from the 2019 SharpBrains Virtual Summit